Doxycycline Degradation by the Oxidative Fenton Process

Author:

Borghi Alexandre A.1,Silva Milena F.2,Al Arni Saleh3,Converti Attilio4ORCID,Palma Mauri S. A.1

Affiliation:

1. Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Bloco 16, Avenida Prof. Lineu Prestes 580, 05508-000 São Paulo, SP, Brazil

2. Biological Science Center, Federal University of Pernambuco, Avenue Prof. Moraes Rego 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil

3. Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

4. Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Genoa University, Via Opera Pia 15, 16145 Genoa, Italy

Abstract

Doxycycline is a broad-spectrum tetracycline occurring in domestic, industrial, and rural effluents, whose main drawback is the increasing emergence of resistant bacteria. This antibiotic could be degraded by the so-called Fenton process, consisting in the oxidation of organic pollutants by oxygen peroxide (H2O2) in the presence of Fe2+. Experiments were performed according to an experimental Rotational Central Composite Design to investigate the influence of temperature (0–40.0°C), H2O2concentration (100–900 mg/L), and Fe2+concentration (5–120 mg/L) on residual doxycycline and total organic carbon concentrations. Whereas the final residual doxycycline concentration ranged from 0 to 55.8 mg/L, the oxidation process proved unable to reduce the total organic carbon by more than 30%. The best operating conditions were concentrations of H2O2and Fe2+of 611 and 25 mg/L, respectively, and temperature of 35.0°C, but the analysis of variance revealed that only the first variable exerted a statistically significant effect on the residual doxycycline concentration. These results suggest possible application of this process in the treatment of doxycycline-containing effluents and may be used as starting basis to treat tetracycline-contaminated effluents.

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3