Animal Models of Diabetes-Associated Renal Injury

Author:

Noshahr Zahra Samadi1,Salmani Hossein1,Khajavi Rad Abolfazl12ORCID,Sahebkar Amirhossein345ORCID

Affiliation:

1. Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2. Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

3. Halal Research Center of IRI, FDA, Tehran, Iran

4. Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

5. School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Diabetic nephropathy (DN) is the main factor leading to end-stage renal disease (ESRD) and subsequent morbidity and mortality. Importantly, the prevalence of DN is continuously increasing in developed countries. Many rodent models of type 1 and type 2 diabetes have been established to elucidate the pathogenesis of diabetes and examine novel therapies against DN. These models are developed by chemical, surgical, genetic, drug, and diet/nutrition interventions or combination of two or more methods. The main characteristics of DN including a decrease in renal function, albuminuria and mesangiolysis, mesangial expansion, and nodular glomerulosclerosis should be exhibited by an animal model of DN. However, a rodent model possessing all of the abovementioned features of human DN has not yet been developed. Furthermore, mice of different genetic backgrounds and strains show different levels of susceptibility to DN with respect to albuminuria and development of glomerular and tubulointerstitial lesions. Therefore, the type of diabetes, development of nephropathy, duration of the study, cost of maintaining and breeding, and animals’ mortality rate are important factors that might be affected by the type of DN model. In this review, we discuss the pros and cons of different rodent models of diabetes that are being used to study DN.

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3