Fiber Bragg Grating Sensors-Based In Situ Monitoring and Safety Assessment of Loess Tunnel

Author:

Lai Jinxing1ORCID,Qiu Junling1ORCID,Fan Haobo1ORCID,Zhang Qian2,Hu Zhinan2,Wang Junbao3,Chen Jianxun1ORCID

Affiliation:

1. School of Highway, Chang’an University, Xi’an 710064, China

2. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

3. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Compared with electrical strain gauges, fiber Bragg grating (FBG) sensing technology is a relatively novel method for tunnel structural health monitoring, which has a number of advantages including high accuracy, multiplexing, electromagnetic interference resistance, and good repeatability. In order to study the internal force of the tunnel liner and detect the potential safety hazards, series of strain monitoring tests of a loess tunnel, taking into account the complex stress and strain variation of the loess during tunnelling, were performed by employing the tandem linear FBG sensor arrays controlled by the wavelength division multiplexing (WDM) technology. The concrete strain has obvious linear characteristics over time in the early stage and then gradually tends to a stable value. Moreover, after the necessary temperature compensation, loess tunnel structure safety was assessed through the analysis of real-time strain and internal force of the liner concrete, and the FBG monitoring data and safety assessment results indicate that the safety factors of various liner sections all meet the code requirements, which verify the safety and stability of the tunnel liner structure. The FBG sensors-based in situ monitoring technology can be well applied in the loess tunnel structure safety assessment.

Funder

Shaanxi Provincial Science and Technology Department

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3