The Real-Time Mobile Application for Classifying of Endangered Parrot Species Using the CNN Models Based on Transfer Learning

Author:

Choe Daegyu1ORCID,Choi Eunjeong1ORCID,Kim Dong Keun2ORCID

Affiliation:

1. Department of Computer Science, Graduate School of Sangmyung University, Seoul, Republic of Korea

2. Department of Intelligent Engineering Information for Human, and Institute of Intelligent Informatics Technology, Sangmyung University, Seoul, Republic of Korea

Abstract

Among the many deep learning methods, the convolutional neural network (CNN) model has an excellent performance in image recognition. Research on identifying and classifying image datasets using CNN is ongoing. Animal species recognition and classification with CNN is expected to be helpful for various applications. However, sophisticated feature recognition is essential to classify quasi-species with similar features, such as the quasi-species of parrots that have a high color similarity. The purpose of this study is to develop a vision-based mobile application to classify endangered parrot species using an advanced CNN model based on transfer learning (some parrots have quite similar colors and shapes). We acquired the images in two ways: collecting them directly from the Seoul Grand Park Zoo and crawling them using the Google search. Subsequently, we have built advanced CNN models with transfer learning and trained them using the data. Next, we converted one of the fully trained models into a file for execution on mobile devices and created the Android package files. The accuracy was measured for each of the eight CNN models. The overall accuracy for the camera of the mobile device was 94.125%. For certain species, the accuracy of recognition was 100%, with the required time of only 455 ms. Our approach helps to recognize the species in real time using the camera of the mobile device. Applications will be helpful for the prevention of smuggling of endangered species in the customs clearance area.

Funder

Ministry of Environment

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3