Modelling Agro-Met Station Observations Using Genetic Algorithm

Author:

Kumar Prashant1,Bhattacharya Bimal K.2,Kishtawal C. M.1,Basu Sujit1

Affiliation:

1. Atmospheric and Oceanic Sciences Group, Space Applications Centre (ISRO), Ahmedabad 380015, India

2. Crop Inventory and Agro-Ecosystems Division (CAD), ABHG, Space Applications Centre (ISRO), Ahmedabad 380015, India

Abstract

The present work discusses the development of a nonlinear data-fitting technique based on genetic algorithm (GA) for the prediction of routine weather parameters using observations from Agro-Met Stations (AMS). The algorithm produces the equations that best describe the temporal evolutions of daily minimum and maximum near-surface (at 2.5-meter height) air temperature and relative humidity and daily averaged wind speed (at 10-meter height) at selected AMS locations. These enable the forecasts of these weather parameters, which could have possible use in crop forecast models. The forecast equations developed in the present study use only the past observations of the above-mentioned parameters. This approach, unlike other prediction methods, provides explicit analytical forecast equation for each parameter. The predictions up to 3 days in advance have been validated using independent datasets, unknown to the training algorithm, with impressive results. The power of the algorithm has also been demonstrated by its superiority over persistence forecast used as a benchmark.

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3