A Risk Score Signature Consisting of Six Immune Genes Predicts Overall Survival in Patients with Lower-Grade Gliomas

Author:

Wu Yuxi1,Peng Zesheng1,Gu Sujie1,Wang Haofei1,Xiang Wei1ORCID

Affiliation:

1. Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

Abstract

Background. Lower-grade gliomas (LGGs) are less aggressive with a long overall survival (OS) time span. Because of individualized genomic features, a prognostic system incorporating molecular signatures can more accurately predict OS. Methods. Differential expression analysis between LGGs and normal tissues was performed using the Gene Expression Omnibus (GEO) datasets (GSE4290 and GSE12657). Immune-related differentially expressed genes (ImmPort-DEGs) were analyzed for functional enrichment. The least absolute shrinkage and selection operator (LASSO) analysis was performed to develop an immune risk score signature (IRSS). We extracted information from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) to establish and validate the model. The relationship of model gene sets with immune infiltration was analyzed based on gene set variation analysis (GSVA) scores. Patients were divided into low- and high-risk groups based on the median score. The time-dependent receiver-operating characteristic (ROC) curve and the Kaplan-Meier curve were used to evaluate the model. Then, a precise prognostic nomogram was established, and its efficacy was verified. Results. A total of 18 related immune genes were identified, building a 6-gene IRSS (BMP2, F2R, FGF13, PCSK1, PRKCB, and PTGER3). DEGs were enriched in T cell and NK cell regulatory pathways. Immune infiltration analysis confirmed that the gene signature correlated with a decrease in innate immune cells. In terms of model evaluation, ROC curves at 1, 3, and 5 years showed moderate predictive ability of IRSS ( AUC = 0.930 , 0.797, and 0.728). The Cox regression analysis revealed that IRSS was an independent prognostic factor, and the nomogram model had good predictive ability ( C index = 0.828 ). Meanwhile, the predictive power of IRSS was also confirmed in the training cohort. The Kaplan-Meier results showed that the prognosis of the high-risk group was significantly worse in all cohorts. Conclusion. IRSS may serve as a novel survival prediction tool in the classification of LGG patients.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3