Affiliation:
1. Department of Medicine, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney, Australia
Abstract
We aimed to determine whether epidermal growth factor receptor (EGFR) inhibition, in addition to a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, prevents high-glucose-induced proximal tubular fibrosis, inflammation, and sodium and water retention in human proximal tubule cells exposed to normal glucose; high glucose; high glucose with the PPARγagonist pioglitazone or with the P-EGFR inhibitor, gefitinib; or high glucose with both pioglitazone and gefitinib. We have shown that high glucose increases AP-1 and NFκB binding activity, downstream phosphorylation of EGFR and Erk1/2, and fibronectin and collagen IV expression. Pioglitazone reversed these effects but upregulated NHE3 and AQP1 expression. Gefitinib inhibited high glucose induced fibronectin and collagen IV, and EGFR and Erk1/2 phosphorylation and reversed pioglitazone-induced increases in NHE3 and AQP1 expression. Our data suggests that combination of an EGFR inhibitor and a PPARγagonist mitigates high-glucose-induced fibrosis and inflammation and reverses the upregulation of transporters and channels involved in sodium and water retention in human proximal tubule cells. Hence EGFR blockade may hold promise, not only in limiting tubulointerstitial pathology in diabetic nephropathy, but also in limiting the sodium and water retention observed in patients with diabetes and exacerbated by PPARγagonists.
Funder
National Health and Medical Research Council
Subject
Pharmacology (medical),Drug Discovery
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献