Structural, Optical, and Photocatalytic Activities of Ag-Doped and Mn-Doped ZnO Nanoparticles

Author:

Ashebir Mengstu Etay1ORCID,Tesfamariam Gebrekidan Mebrahtu1,Nigussie Gebretinsae Yeabyo1ORCID,Gebreab Tesfakiros Woldu2

Affiliation:

1. Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Ethiopia

2. Department of Physics, College of Natural and Computational Sciences, Mekelle University, Mekelle, Ethiopia

Abstract

We report the photocatalytic activities of ZnO, Ag-doped ZnO, and Mn-doped ZnO nanoparticles (NPs). Ag-doped and Mn-doped ZnO samples were synthesized using a coprecipitation method and calcined at 600°C. XRD, SEM, EDX, and UV-vis spectroscopy techniques were employed for characterization of the synthesized samples. The photocatalytic activities of the samples were evaluated by measuring the photocatalytic decolorization of methyl violet with sunlight being the source of energy. XRD patterns of the samples confirmed the wurtzite structure without change which was indicative of the absence of Mn- and Ag-related secondary phases for the doped ZnO. The UV-vis spectra indicated the band gap energy of ZnO, Ag-doped ZnO, and Mn-doped ZnO to be 2.98, 2.80, and 2.64 eV, respectively. Photocatalytic decolorization of methyl violet for the synthesized samples was found to be favorable at a pH of 9.0, catalyst dose of 1 g/L, and initial dye concentration of 4.5 × 10−4 g/L. Mn-doped ZnO and Ag-doped ZnO photocatalytic decolorization efficiency was significantly higher than undoped ZnO. Incorporation of Mn and Ag enhanced the visible-light photocatalytic activity of ZnO; this could be due to the ability of these metals to increase the surface defects of ZnO which in turn shift their optical absorption towards the visible region.

Funder

NORAD

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3