The Therapeutic Effects after Transplantation of Whole-Layer Olfactory Mucosa in Rats with Optic Nerve Injury

Author:

Gong Shun12,Jin Hai1,Zhang Danfeng1ORCID,Zou Wei1,Wang Chunhui1,Li Zhenxing1,Chen Rongbin1,Dong Yan1ORCID,Hou Lijun1ORCID

Affiliation:

1. Department of Neurosurgery, Shanghai Institute of Neurosurgery, PLA Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China

2. Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA

Abstract

Background. Existing evidence suggests the potential therapy of transplanting olfactory ensheathing cells (OEC) either alone or in combination with neurotrophic factors or other cell types in optic nerve injury (ONI). However, clinical use of autologous OEC in the acute stages of ONI is not possible. On the other hand, acute application of heterologous transplantation may bring the issue of immune rejection. The olfactory mucosa (OM) with OEC in the lamina propria layer is located in the upper region of the nasal cavity and is easy to dissect under nasal endoscopy, which makes it a candidate as autograft material in acute stages of ONI. To investigate the potential of the OM on the protection of injured neurons and on the promotion of axonal regeneration, we developed a transplantation of syngenic OM in rats with ONI model. Methods. After the right optic nerve was crushed in Lewis rats, pieces of syngenic whole-layer OM were transplanted into the lesion. Rats undergoing phosphate buffered saline (PBS) injection were used as negative controls (NC). The authors evaluated the regeneration of retinal ganglion cells (RGCs) and axons for 3, 7, 14, and 28 days after transplantation. Obtained retinas and optic nerves were analyzed histologically. Results. Transplantations of OM significantly promoted the survival of retinal ganglion cells (RGCs) and axonal growth of RGCs compared with PBS alone. Moreover, OM group was associated with higher expression of GAP-43 in comparison with the PBS group. In addition to the potential effects on RGCs, transplantations of OM significantly decreased the expression of GFAP in the retinas, suggesting inhibiting astrocyte activation. Conclusions. Transplantation of whole-layer OM in rats contributes to the neuronal survival and axon regeneration after ONI.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Problems and prospects for restoration of the optic nerve;Журнал высшей нервной деятельности им. И.П. Павлова;2024-07-10

2. Problems and Prospects for Restoration of the Optic Nerve;Neuroscience and Behavioral Physiology;2024-07

3. Research progress on optic nerve injury and regeneration;SCIENTIA SINICA Vitae;2022-12-07

4. Cytokines in Scar Glial Formation after an Acute and Chronic Spinal Cord Injury;Cytokines;2020-08-19

5. Models and treatments for traumatic optic neuropathy and demyelinating optic neuritis;Developmental Neurobiology;2019-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3