Affiliation:
1. Faculty of Mechanical Engineering, Universiti Teknologi MARA, Selangor, 40450 Shah Alam, Malaysia
2. Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
Abstract
Using the electrodeposition process, cobalt-iron (Co-Fe) nanocrystalline coatings were successfully synthesized onto stainless steel in deposition times of 30, 60, and 90 minutes. The temperature used throughout the process was 50°C in an acidic environment of pH 3. By changing the deposition time, physical properties such as phase and crystallographic structure, surface morphology, grain size, microhardness, and magnetic properties of Co-Fe coatings were examined. FESEM micrographs showed that the grain sizes of the coatings were in the range from 57.9 nm to 70.2 nm. Dendrite and irregular shapes were found in the microstructure of Co-Fe nanocoating. The Co-Fe nanocrystalline coating prepared in a deposition time of 90 minutes achieved the highest microhardness of 339 HVN. The magnetic properties associated with Co-Fe nanocoating at longer deposition times show greater coercivity,Hc, and saturation magnetization,Ms, values of 56.43 Oe and 70.45 eμ/g, respectively. The M-H curves for all the Co-Fe coatings exhibited soft ferromagnetic behaviour with narrow hysteresis loops. It was found that increasing the deposition time also improved the microhardness and magnetic properties of Co-Fe nanocoating, which is much needed for long-life high-coercivity magnetic strip card applications.
Funder
Fundamental Research Grant Scheme
Subject
General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献