Numerical Estimation of Torsional Dynamic Coefficients of a Hydraulic Turbine

Author:

Karlsson Martin1,Nilsson Håkan2,Aidanpää Jan-Olov3

Affiliation:

1. Lloyd's Register ODS, 10074 Stockholm, Sweden

2. Department of Fluid Dynamics, Chalmers University of Technology, 41296 Göteborg, Sweden

3. Division of Solid Mechanics, Department of Mechanical Engineering, Luleå University of Technology, 97187 Luleå, Sweden

Abstract

The rotordynamic behavior of a hydraulic turbine is influenced by fluid-rotor interactions at the turbine runner. In this paper computational fluid dynamics (CFDs) are used to numerically predict the torsional dynamic coefficients due to added polar inertia, damping, and stiffness of a Kaplan turbine runner. The simulations are carried out for three operating conditions, one at about 35% load, one at about 60% load (near best efficiency), and one at about 70% load. The runner rotational speed is perturbed with a sinusoidal function with different frequencies in order to estimate the coefficients of added polar inertia and damping. It is shown that the added coefficients are dependent of the load and the oscillation frequency of the runner. This affect the system's eigenfrequencies and damping. The eigenfrequency is reduced with up to 65% compared to the eigenfrequency of the mechanical system without the fluid interaction. The contribution to the damping ratio varies between 30–80% depending on the load. Hence, it is important to consider these added coefficients while carrying out dynamic analysis of the mechanical system.

Funder

Swedish National Infrastructure for Computing

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3