Coastal Zone Classification Based on Multisource Remote Sensing Imagery Fusion

Author:

Li Jiahui1ORCID,Zhao Youxin1ORCID,Dai Jiguang1,Zhu Hong23

Affiliation:

1. School of Geometrics, Liaoning Technical University, Fuxin 123000, China

2. Satellite Surveying and Mapping Application Center, NASG, Beijing 100048, China

3. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China

Abstract

The main objective of this paper was to assess the capability of multisource remote sensing imagery fusion for coastal zone classification. Five scenes of Gaofen- (GF-) 1 optic imagery and four scenes of synthetic aperture radar (SAR) (C-band Sentinel-1 and L-band ALOS-2) imagery were collected and matched. Note that GF-1 is the first satellite of the China high-resolution earth observation system, which acquires multispectral data with decametric spatial resolution, high temporal resolution, and wide coverage. The results showed that based on the comparison of C- and L-band SAR for coastal coverage, it is verified that C band is superior to L band and parameter subsets of σvv0, σvh0, and Dcross can be effectively used for coastal classification. A new fusion method based on the wavelet transform (WT) was also proposed and used for imagery fusion. Statistical values for the mean, entropy, gradient, and correlation coefficient of the proposed method were 67.526, 7.321, 6.440, and 0.955, respectively. We therefore conclude that the result of our proposed method is superior to GF-1 imagery and traditional HIS fusion results. Finally, the classification output was determined along with an assessment of classification accuracy and kappa coefficient. The kappa coefficient and overall accuracy of the classification were 0.8236 and 85.9774%, respectively, so the proposed fusion method had a satisfying performance for coastal coverage mapping.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on SVM Classification Technology with Improved Shoreland Feature Selection;Lecture Notes in Electrical Engineering;2024

2. Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense Tensor Computations;2020 IEEE International Symposium on High Performance Computer Architecture (HPCA);2020-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3