Unsteady Aerodynamic Modeling Based on POD-ARX

Author:

Wang Xiaopeng1,Zhang Chen’an2ORCID,Liu Wen2,Wang Famin2,Ye Zhengyin1

Affiliation:

1. Northwestern Polytechnical University, Xi’an 710072, China

2. State Key Laboratory of High-Temperature Gas Dynamic, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

The lack of stability is a problem encountered when applying the classical POD-Galerkin method to problems of unsteady compressible flows around a moving structure. To solve this problem, a hybrid reduced-order model named POD-ARX is constructed in this paper. The construction of this model involves two steps, including first extracting the fluid modes with the POD technique and then identifying the modal coefficients with the ARX model. The POD modes with the block of all modified primitive variables are extracted from the system response to the training signal. Once the POD modes are obtained, the snapshots are projected on these modes to determine the time history of modal coefficients and the resulting modal coefficients are used to identify the parameters of ARX model. Then, the ARX model is used to predict the modal coefficients of the system response to the validation signal. Sample two-dimensional aerodynamic force calculations are conducted to demonstrate this method. Results show that this method can produce a stable and accurate prediction to the aerodynamic response with significant improvement of computational efficiency for linear and even some nonlinear aerodynamic problems. In addition, this method also shows good wide-band characteristics by using the “3211” multistep signal as the training signal.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3