Reliable Machine Learning Based Spectrum Sensing in Cognitive Radio Networks

Author:

Shah Hurmat Ali1ORCID,Koo Insoo1ORCID

Affiliation:

1. School of Electrical Engineering, University of Ulsan, Republic of Korea

Abstract

Spectrum sensing is of crucial importance in cognitive radio (CR) networks. In this paper, a reliable spectrum sensing scheme is proposed, which uses K-nearest neighbor, a machine learning algorithm. In the training phase, each CR user produces a sensing report under varying conditions and, based on a global decision, either transmits or stays silent. In the training phase the local decisions of CR users are combined through a majority voting at the fusion center and a global decision is returned to each CR user. A CR user transmits or stays silent according to the global decision and at each CR user the global decision is compared to the actual primary user activity, which is ascertained through an acknowledgment signal. In the training phase enough information about the surrounding environment, i.e., the activity of PU and the behavior of each CR to that activity, is gathered and sensing classes formed. In the classification phase, each CR user compares its current sensing report to existing sensing classes and distance vectors are calculated. Based on quantitative variables, the posterior probability of each sensing class is calculated and the sensing report is classified into either representing presence or absence of PU. The quantitative variables used for calculating the posterior probability are calculated through K-nearest neighbor algorithm. These local decisions are then combined at the fusion center using a novel decision combination scheme, which takes into account the reliability of each CR user. The CR users then transmit or stay silent according to the global decision. Simulation results show that our proposed scheme outperforms conventional spectrum sensing schemes, both in fading and in nonfading environments, where performance is evaluated using metrics such as the probability of detection, total probability of error, and the ability to exploit data transmission opportunities.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Cross-Layer Performance Evaluation System for Spectrum Sensing and Allocation Strategies in CR-WSN;IEEE Sensors Journal;2024-05-01

2. DQN Based Distributed Cooperative Spectrum Sensing for Multiband Multiuser CRN;2024 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT);2024-03-15

3. A review of spectrum sensing in modern cognitive radio networks;Telecommunication Systems;2023-11-24

4. Cooperative Spectrum Sensing for Cognitive Radio Based on Decision Tree Algorithm;2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA);2023-11-14

5. Antiference: New Concept for Evolutive Mitigation of RFI to GNSS;ENC 2023;2023-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3