Multistrategy Improved Whale Optimization Algorithm and Its Application

Author:

Liu Lisang12ORCID,Zhang Rongsheng12ORCID

Affiliation:

1. School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou, Fujian 350118, China

2. National Demonstration Center for Experimental Electronic Information and Electrical Technology Education, Fujian University of Technology, Fuzhou, Fujian 350118, China

Abstract

To address the shortcomings of the whale optimization algorithm (WOA) in terms of insufficient global search ability and slow convergence speed, a differential evolution chaotic whale optimization algorithm (DECWOA) is proposed in this paper. Firstly, the initial population is generated by introducing the Sine chaos theory at the beginning of the algorithm to increase the population diversity. Secondly, new adaptive inertia weights are introduced into the individual whale position update formula to lay the foundation for the global search and improve the optimization performance of the algorithm. Finally, the differential variance algorithm is fused to improve the global search speed and accuracy of the whale optimization algorithm. The impact of various improvement strategies on the performance of the algorithm is analyzed using different kinds of test functions that are randomly selected. The particle swarm optimization algorithm (PSO), butterfly optimization algorithm (BOA), WOA, chaotic feedback adaptive whale optimization algorithm (CFAWOA), and DECWOA algorithm are compared for the optimal search performance. Experimental simulations are performed using MATLAB software, and the results show that the improved whale optimization algorithm has a better global optimization-seeking capability. The improved whale optimization algorithm is applied to the distribution network fault location of IEEE-33 nodes, and the effectiveness and accuracy of the distribution network fault zone location based on the multistrategy improved whale optimization algorithm is verified.

Funder

Fujian Provincial Department of Science and Technology

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3