NNPCov19: Artificial Neural Network-Based Propaganda Identification on Social Media in COVID-19 Era

Author:

Khanday Akib Mohi Ud Din1ORCID,Bhushan Bharat2ORCID,Jhaveri Rutvij H.3ORCID,Khan Qamar Rayees1ORCID,Raut Roshani4ORCID,Rabani Syed Tanzeel1ORCID

Affiliation:

1. Department of Computer Sciences, BGSB University, Rajouri, India

2. Department of Computer Science and Engineering, Sharda University, Greater Noida, India

3. Department of Computer Science and Engineering, Pandit Deendayal Energy University, Raysan, India

4. Department of Information Technology, Savitribai Phule Pune University, Pune, India

Abstract

The latest trend of sharing information has evolved many concerns for the current researchers, which are working on computational social sciences. Online social network platforms have become a tool for sharing propagandistic information. This is being used as a lethal weapon in modern days to destabilize democracies and other political or religious events. The COVID-19 affected almost every corner of the world. Various propagandistic tweets were shared on Twitter during the peak time of COVID-19. In this paper, improved artificial neural network algorithm is proposed to classify tweets into propagandistic and nonpropagandistic class. The data are extracted using multiple ambiguous hashtags and are manually annotated into binary class. Hybrid feature engineering is being performed by combining “Term Frequency (TF)/Inverse Document Frequency (IDF),” “Bag of Words,” and Tweet Length. The proposed algorithm is compared with logistic regression, support vector machine, and multinomial Naive Bayes. Results showed that improved artificial neural network algorithm outperforms other machine learning algorithms by having 77.15% accuracy, 77% of recall, and 79% precision. In future, deep learning approaches like LSTM may be used for this classification task.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3