A New Efficient Redescending M-Estimator for Robust Fitting of Linear Regression Models in the Presence of Outliers

Author:

Khan Dost Muhammad1ORCID,Ali Muhammad1,Ahmad Zubair2ORCID,Manzoor Sadaf3,Hussain Sundus4

Affiliation:

1. Department of Statistics, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan

2. Department of Statistics, Yazd University, P.O. Box 89175-741, Yazd, Iran

3. Department of Statistics, Islamia College Peshawar, Peshawar, KP, Pakistan

4. Department of Statistics, Shaheed Benazir Bhutto Women University, Peshawar, KP, Pakistan

Abstract

Robust regression is an important iterative procedure that seeks analyzing data sets that are contaminated with outliers and unusual observations and reducing their impact over regression coefficients. Robust estimation methods have been introduced to deal with the problem of outliers and provide efficient and stable estimates in their presence. Various robust estimators have been developed in the literature to restrict the unbounded influence of the outliers or leverage points on the model estimates. Here, a new redescending M-estimator is proposed using a novel objective function with the prime focus on getting highly robust and efficient estimates that give promising results. It is evident from the results that, for normal and clean data, the proposed estimator is almost as efficient as ordinary least square method and, however, becomes highly resistant to outliers when it is used for contaminated datasets. The simulation study is being carried out to assess the performance of the proposed redescending M-estimator over different data generation scenarios including normal, t-distribution, and double exponential distributions with different levels of outliers’ contamination, and the results are compared with the existing redescending M-estimators, e.g., Huber, Tukey Biweight, Hampel, and Andrew-Sign function. The performance of the proposed estimators was also checked using real-life data applications of the estimators and found that the proposed estimators give promising results as compared to the existing estimators.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3