On the Analytical and Numerical Solutions of the One-Dimensional Nonlinear Schrodinger Equation

Author:

Farag Neveen G. A.1ORCID,Eltanboly Ahmed H.1,EL-Azab M. S.1,Obayya S. S. A.23

Affiliation:

1. Mathematics and Engineering Physics Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt

2. Centre for Photonics and Smart Materials, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt

3. Electronics and Communications Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt

Abstract

In this paper, four compelling numerical approaches, namely, the split-step Fourier transform (SSFT), Fourier pseudospectral method (FPSM), Crank-Nicolson method (CNM), and Hopscotch method (HSM), are exhaustively presented for solving the 1D nonlinear Schrodinger equation (NLSE). The significance of this equation is referred to its notable contribution in modeling wave propagation in a plethora of crucial real-life applications such as the fiber optics field. Although exact solutions can be obtained to solve this equation, these solutions are extremely insufficient because of their limitations to only a unique structure under some limited initial conditions. Therefore, seeking high-performance numerical techniques to manipulate this well-known equation is our fundamental purpose in this study. In this regard, extensive comparisons of the proposed numerical approaches, against the exact solution, are conducted to investigate the benefits of each of them along with their drawbacks, targeting a broad range of temporal and spatial values. Based on the obtained numerical simulations via MATLAB, we extrapolated that the SSFT invariably exhibits the topmost robust potentiality for solving this equation. However, the other suggested schemes are substantiated to be consistently accurate, but they might generate higher errors or even consume more processing time under certain conditions.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3