Construction of a Mental Health Education Model for College Students Based on Fine-Grained Parallel Computing Programming

Author:

Zhu Jianjian1ORCID,Xue Yanlong1

Affiliation:

1. Department of Public Administration, Xi’an University of Finance and Economics, Xi’an, Shaanxi 710016, China

Abstract

Mental health and mental health problems of college students are becoming more and more obvious, and there is more and more negative news caused by psychological problems, and society from all walks of life has given high attention to this problem. Given the new situations and new problems, how to keep up with the times and reform and innovate in the content, method, and path of psychological education in colleges and universities is an important work of ideological and political education in colleges and universities. Because fine-grained category information can provide rich semantic clues, fine-grained parallel computing techniques are widely used in tasks such as sensitive feature filtering, medical image classification, and dangerous goods detection. In this study, we adopt a fine-grained parallel computing programming approach and propose a multiobjective matrix regular optimization algorithm that can simultaneously perform the joint square root, low-rank, and sparse regular optimization for bilinear visual features, which is used to stabilize the higher-order semantic information in bilinear features, improve the generalization ability of features, and apply it to the construction of mental health education models for college students to promote the construction of mental health education bases, improve mental health education network platform, and strengthen the construction of mental health education data platform. A new practical aspect has been added to the abstract. The saliency-guided data augmentation method in this study is an improvement on random data augmentation but reduces the randomness in the data augmentation process and significantly improves the results. The best result belongs to SCutMix data augmentation, which improves by 1.9% compared to the baseline network.

Funder

the Nation Social Science Fund of China—Spatiotemporal Evolution Mechanism and Common Track Spillover Effect of Dual Cross-Border FDI Driving Chinese Innovative Development

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3