Synthesis of a Novel Ce-bpdc for the Effective Removal of Fluoride from Aqueous Solution

Author:

Zhao Changqing1,Cui Yanwei1,Fang Fang1,Ryu Si Ok2ORCID,Huang Jiarui1ORCID

Affiliation:

1. College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, Anhui 241000, China

2. School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712749, Republic of Korea

Abstract

Ce-1,1′-biphenyl-4,4′-dicarboxylic acid (Ce-bpdc), a novel type of metal organic framework, was synthesized and applied to remove excessive fluoride from water. The structure and morphology of Ce-bpdc were measured by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The effects, such as saturated adsorption capacity, HCO3-, and pH, were investigated. The optimal pH value for fluoride adsorption was the range from 5 to 6. The coexisting bicarbonate anions have a little influence on fluoride removal. The fluoride adsorption over the Ce-bpdc adsorbent could reach its equilibrium in about 20 min. The Ce-bpdc coordination complex exhibited high binding capacity for fluoride ions. The maximum adsorption capacity calculated from Langmuir model was high up to 45.5 mg/g at 298 K (pH = 7.0) and the removal efficiency was greater than 80%. In order to investigate the mechanism of fluoride removal, various adsorption isotherms such as Langmuir and Freundlich were fitted. The experimental data revealed that the Langmuir isotherm gave a more satisfactory fit for fluoride removal. Finally, the tested results of ground water samples from three places, Yuefang, Jiangji, and Sanyi which exhibited high removal efficiency, also demonstrate the potential utility of the Ce-bpdc as an effective adsorbent.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3