Affiliation:
1. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
2. School of Information Engineering, Dalian University, Dalian 116622, China
Abstract
Timely and accurate network traffic prediction is a necessary means to realize network intelligent management and control. However, this work is still challenging considering the complex temporal and spatial dependence between network traffic. In terms of spatial dimension, links connect different nodes, and the network traffic flowing through different nodes has a specific correlation. In terms of spatial dimension, not only the network traffic at adjacent time points is correlated, but also the importance of distant time points is not necessarily less than the nearest time point. In this paper, we propose a novel intelligent network traffic prediction method based on joint attention and GCN-GRU (AGG). The AGG model uses GCN to capture the spatial features of traffic, GRU to capture the temporal features of traffic, and attention mechanism to capture the importance of different temporal features, so as to realize the comprehensive consideration of the spatial-temporal correlation of network traffic. The experimental results on an actual dataset show that, compared with other baseline models, the AGG model has the best performance in experimental indicators, such as root mean square error (RMSE), mean absolute error (MAE), accuracy (ACC), determination coefficient (
), and explained variance score (EVS), and has the ability of long-term prediction.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,Information Systems
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献