Discovery of a Novel Variant of SEMA3A in a Chinese Patient with Isolated Hypogonadotropic Hypogonadism

Author:

Dai Wenting1ORCID,Li Jia-Da234,Wang Xinying234,Zeng Wang234,Jiang Fang234,Zheng Ruizhi5

Affiliation:

1. Department of Clinical Laboratory, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan 412007, China

2. School of Life Sciences, Central South University, Changsha, Hunan 410078, China

3. Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan 410078, China

4. Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China

5. Department of Endocrinology, The People’s Hospital of Henan Province, Zhengzhou, Henan 450003, China

Abstract

Semaphorin (SEMA) has an important role in nerve development, organ formation, immune response, angiogenesis, and tumor growth. SEMA can regulate the growth and branching of axons, the morphology of dendrites, and the migration of neurons. The loss-of-function in SEMA and its receptors PLXNs and NRP affect the migration of GnRH neurons, leading to idiopathic hypogonadotropic hypogonadism (IHH). As a member of the SEMA family, SEMA3A has an important role in axonal rejection, dendritic branching, synaptic formation, and neuronal migration. There are more and more SEMA3A variants identified in IHH patients. In this study, we identified a novel SEMA3A variant (c.1369A > G (p.T457A)) in a male nIHH patient. Functional studies indicated that the T457A SEMA3A variant led to the defect of FAK phosphorylation and GN11 cell migration, which strongly argued in favor of its pathogenic effect in the nIHH patient. Our findings substantiated that the 435–457 position of SEMA3A might be very important for the secretion of SEMA3A. Haploin-sufficiency of SEMA3A in humans was sufficient to cause the IHH phenotype. SEMA3A variants might have a role in modifying the IHH phenotype, according to the variants at different positions of SEMA3A. SEMAs and its receptors formed a complex network, and other members of the SEMA-signaling pathway might also be involved in the pathogenesis of IHH.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3