Application of 3D Printing Technology in the Mechanical Testing of Complex Structural Rock Masses

Author:

Xia Yingjie12,Meng Qingkun1,Zhang Chuanqing2ORCID,Liu Ning3,Zhao Zhenxing4,Chen Jun3,Yang Gao2

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China

3. Power China Huadong Engineering Corporation, Hangzhou, Zhejiang 310014, China

4. China Railway Construction Bridge Engineering Bureau Group 3rd Engineering Co., Shenyang, Liaoning 110043, China

Abstract

In the engineering of underground construction, the discontinuous structures in rock mass have important influences on the mechanical behaviors of the subsurface of rock mass. The acquisition of mechanical parameters is the basis of rock mass engineering design, construction, safety, and stability evaluation. However, the mechanical parameters and failure characteristics of the same rock mass under different mechanical conditions cannot be obtained due to the limitations of specimen preparation techniques. In recent years, with the continuous development of 3D printing (3DP) technology, it has been successfully applied to the repetitive preparation of rock mass samples. The combinations of 3DP and other techniques, such as 3D scanning and CT scanning, provided a new approach to study the mechanical behavior of complex structural rock masses. In this study, through a comprehensive review of the technical progress, equipment situation, application fields, and challenges of the use of 3DP technology, the following conclusions were obtained: (1) 3DP technology has advantages over traditional rock mass specimen preparation techniques, and the verification of test results using 3D printed samples shows that the 3DP has broad application prospects in geotechnical engineering. (2) The combination of 3DP and other advanced techniques can be used to achieve the accurate reconstruction of complex structural rock masses and to obtain the mechanical and failure characteristics of the same rock mass structure under different mechanical boundary conditions. (3) The development of 3DP materials with high strength, high brittleness, and low ductility has become the major bottleneck in the application of 3DP in geotechnical engineering. (4) 3D printers need to meet the high precision and large size requirements while also having high strength and long-term printing ability. The development of 3D printers that can print different types of materials is also an important aspect of the application of 3DP in geotechnical engineering.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3