Deep Learning-Based Channel Reciprocity Learning for Physical Layer Secret Key Generation

Author:

He Haoyu1ORCID,Chen Yanru1,Huang Xinmao2,Xing Minghai3,Li Yang4,Xing Bin5ORCID,Chen Liangyin16ORCID

Affiliation:

1. School of Computer Science & School of Software Engineering, Sichuan University, Chengdu 610065, China

2. Sichuan GreatWall Computer System Co., Ltd, Luzhou 646000, China

3. CEC Jiutian Intelligent Technology Co., Ltd, Shuangliu District, Chengdu, Sichuan 610299, China

4. Science and Technology on Security Communication Laboratory, Institute of Southwestern Communication, Chengdu 610041, China

5. Chongqing Innovation Center of Industrial Big-Data Co., Ltd, Chongqing 400707, China

6. Institute for Industrial Internet Research, Sichuan University, Chengdu 610065, China

Abstract

Using the physical layer channel information of wireless devices to establish the highly consistent secret keys is a promising technology for improving the security of wireless networks. Nevertheless, in the time division duplex system, the reciprocity of the wireless channel that is the basic principle of key generation is impaired by nonsimultaneous sampling and noise factors. Existing physical layer key generation approaches rely on hand-crafted feature extraction algorithms, which have high overhead or security issues and are impractical in real-world situations. This paper presents a novel physical layer key generation method to extract highly consistent keys from imperfect channel responses, which exploits channel reciprocity through deep learning. Specifically, we first design the Channel Reciprocity Learning Net (CRLNet), a neural network for efficiently learning channel reciprocity features from the wireless channel in TDD OFDM systems. Later, a new key generation scheme based on CRLNet is developed that can achieve a high key agreement rate. Experiments indicate that the CRLNet-based key generation scheme performs excellently in terms of key generation rate, key error rate, and randomness, confirming that our method has better performance and lower overhead than existing methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3