Mining the Hidden Link Structure from Distribution Flows for a Spatial Social Network

Author:

Zheng Yanqiao1,Zhao Xiaobing2,Zhang Xiaoqi1ORCID,Ye Xinyue3,Dai Qiwen4

Affiliation:

1. School of Finance, Zhejiang University of Finance and Economics, China

2. School of Data Science, Zhejiang University of Finance and Economics, China

3. Urban Informatics-Spatial Computing Lab & College of Computing, New Jersey Institute of Technology, USA

4. School of Economics & Management, Guangxi Normal University, China

Abstract

This study aims at developing a non-(semi-)parametric method to extract the hidden network structure from the {0,1}-valued distribution flow data with missing observations on the links between nodes. Such an input data type widely exists in the studies of information propagation process, such as the rumor spreading through social media. In that case, a social network does exist as the media of the spreading process, but its link structure is completely unobservable; therefore, it is important to make inference of the structure (links) of the hidden network. Unlike the previous studies on this topic which only consider abstract networks, we believe that apart from the link structure, different social-economic features and different geographic locations of nodes can also play critical roles in shaping the spreading process, which has to be taken into account. To uncover the hidden link structure and its dependence on the external social-economic features of the node set, a multidimensional spatial social network model is constructed in this study with the spatial dimension large enough to account for all influential social-economic factors. Based on the spatial network, we propose a nonparametric mean-field equation to govern the rumor spreading process and apply the likelihood estimator to make inference of the unknown link structure from the observed rumor distribution flows. Our method turns out easily extendible to cover the class of block networks that are useful in most real applications. The method is tested through simulated data and demonstrated on a data set of rumor spreading on Twitter.

Funder

China National Planning Office of Philosophy and Social Sciences

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3