Spatial and Temporal Variability in the Precipitation Concentration in the Upper Reaches of the Hongshui River Basin, Southwestern China

Author:

Huang Ya12ORCID,Wang Hao2ORCID,Xiao Weihua2ORCID,Chen Li-hua1ORCID,Yan Deng-hua2ORCID,Zhou Yu-yan2,Jiang Da-chuan2ORCID,Yang Ming-zhi2ORCID

Affiliation:

1. College of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi 530004, China

2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Catchment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Abstract

The statistical characteristics of precipitation play important roles not only in flood and drought risk assessments but also in water resource management. This paper implements a statistical analysis to study the spatial and temporal variability in precipitation in the upper reaches of the Hongshui River basin (UHRB), southwestern China, by analysing time series of daily precipitation from 18 weather stations during the period of 1959 to 2015. To detect precipitation concentrations and the associated patterns, three indices, the precipitation concentration index (PCI), precipitation concentration degree (PCD), and precipitation concentration period (PCP), were used. The relationships between the precipitation concentration indices (PCI, PCD, and PCP) and geographic variables (latitude, longitude, and elevation), large-scale atmospheric circulation indices, and summer monsoon indices were investigated to identify specific dependencies and spatial patterns in the precipitation distribution and concentration. The results show that high PCI values were mainly observed in the northeastern portion of the basin, whereas low PCI values were mainly detected in the southwest. The Mann-Kendall test results demonstrate that the majority of the UHRB is characterized by nonsignificant trends in the PCI, PCD, and PCP from 1959 to 2015. The PCP results reveal that rainfall in the UHRB mainly occurs in summer months, and the rainy season arrives earlier in the eastern UHRB than in the western UHRB. Additionally, the PCD results indicate that the rainfall in the western UHRB is more dispersed throughout the year than that in the eastern UHRB. Compared with other geographical factors, longitude is the most important variable that governs the spatial distribution and variations in annual precipitation and the precipitation concentration indices. Due to a combination of topography, the Indian subtropical high, and monsoon weakening, precipitation may be more concentrated in one period, especially in the eastern part of the basin, which increases the risk of drought.

Funder

National Key Research and Development Program

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3