The Spiral Coaxial Cable

Author:

Fabbri I. M.1

Affiliation:

1. Department of Physics, University of Milan, Via Celoria 16, 20133 Milan, Italy

Abstract

A new concept of metal spiral coaxial cable is introduced. The solution to Maxwell’s equations for the fundamental propagating TEM eigenmode, using a generalization of the Schwarz-Christoffel conformal mapping of the spiral transverse section, is provided together with the analysis of the impedances and the Poynting vector of the line. The new cable may find application as a medium for telecommunication and networking or in the sector of the Microwave Photonics. A spiral plasmonic coaxial cable could be used to propagate subwavelength surface plasmon polaritons at optical frequencies. Furthermore, according to the present model, the myelinated nerves can be considered natural examples of spiral coaxial cables. This study suggests that a malformation of the Peters angle, which determines the power of the neural signal in the TEM mode, causes higher/lower power to be transmitted in the neural networks with respect to the natural level. The formulas of the myelin sheaths thickness, the diameter of the axon, and the spiral g factor of the lipid bilayers, which are mathematically related to the impedances of the spiral coaxial line, can make it easier to analyze the neural line impedance mismatches and the signal disconnections typical of the neurodegenerative diseases.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiation

Reference41 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Influence of the Dimensions of a Power Bus Bar with a Spiral Cross-Section on its Inductance and Capacitance;2022 International Siberian Conference on Control and Communications (SIBCON);2022-11-17

2. A physical perspective to understand myelin. I. A physical answer to Peter’s quadrant mystery;Frontiers in Neuroscience;2022-09-26

3. Analysis of S-Parameters for RF Coaxial Cables at Different Environmental Conditions;International Journal of Advanced Research in Science, Communication and Technology;2022-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3