On Design of Through-Hole Structure Inspired by Vascular Bundle of Bamboo for Multiple Compression Load Cases

Author:

Liu Guomin1,Liu Yansong2ORCID,Chen Haoqing1ORCID,Chen Yongxu1,Song Jiafeng3ORCID,Qi Yingchun2,Zou Meng2ORCID

Affiliation:

1. College of Civil Engineering, Jilin Jianzhu University, Changchun 130118, China

2. Key Lab of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China

3. Tsinghua University, State Key Lab Automot Safety & Energy, Beijing 100084, China

Abstract

In this paper, the multiangle’s crashworthiness of the bionic tubes inspired by the cylindrical fibers of bamboo vascular bundles as well as the through-hole structure are studied. A finite element model validated by the theoretical analysis and drop hammer impact experiments is used to assess the optimal core distribution ratio of the bionic tube at 0°, 10°, 20°, and 30° impacts. Finally the effects of the number of circular core and wall thickness on crashworthiness are investigated. The results show that the bionic tube has better crashworthiness at small angle impacts compared to the square tubes, and l14r6 is obtained as the optimum bionic tube: the SEA at small angles improves by 12.72% (0°), 14.91% (10°), and 18.12% (20°), respectively; however, the SEA at 30° impact decreases by 2.53%. As the number of circular core increases, the crashworthiness becomes more significant, but the deformation mode becomes worse. The SEA of the tube with 32 cores increases by an average of 1.85 times (0°), 1.89 times (10°), 1.34 times (20°), and 1.41 times (30°) for each impact condition, respectively, compared to the tube with single core.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3