Dynamic Fractional Frequency Reuse Diversity Design for Intercell Interference Mitigation in Nonorthogonal Multiple Access Multicellular Networks

Author:

Mehmood Kashif1ORCID,Niaz Muhammad Tabish2,Kim Hyung Seok1ORCID

Affiliation:

1. Department of Information and Communication Engineering, Sejong University, Seoul, Republic of Korea

2. Smart Device Engineering, Sejong University, Seoul, Republic of Korea

Abstract

Nonorthogonal multiple access (NOMA) is one of the few promising techniques that can ensure the achievement of benefits foreseen in next-generation 5G wireless networks and beyond. By using superposition coding, NOMA allows multiple users to share the same time and frequency resources, thereby enhancing user connectivity, spectral efficiency, and a considerable increase in user throughput. Interference mitigation is an important consideration in NOMA and is considerably more influencing in multicellular environments. First, a brief description of the impairments that can arise in a NOMA cellular network along with responsible factors is provided. Second, different approaches adopted to minimize these impairments are discussed. Finally, a possible solution is proposed that consists of a coordinated approach between the individual cells in the NOMA domain to minimize interferences and improve user throughput. Adaptive fractional frequency reuse (FFR) is used to allocate distinct frequency resources to edge users of different cells to minimize intercell interference in NOMA. Simulation results prove that the proposed NOMA scheme plays an important role in minimizing impairment effects and enhancing the SINR and the throughput performance of edge users while ensuring fairness in its design.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3