A Multiple Target Localization with Sparse Information in Wireless Sensor Networks

Author:

Liu Liping1ORCID,Yuan Shaoqing1ORCID,Lv Weijie1ORCID,Zhang Qiang1ORCID

Affiliation:

1. School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China

Abstract

It is a great challenge for wireless sensor network to provide enough information for targets localization due to the limits on application environment and its nature, such as energy, communication, and sensing precision. In this paper, a multiple targets localization algorithm with sparse information (MTLSI) was proposed using compressive sensing theory, which can provide targets position with incomplete or sparse localization information. It does not depend on extra hardware measurements. Only targets number detected by sensors is needed in the algorithm. The monitoring region was divided into a plurality of small grids. Sensors and targets are randomly dropped in grids. Targets position information is defined as a sparse vector; the number of targets detected by sensor nodes is expressed as the product of measurement matrix, sparse matrix, and sparse vector in compressive sensing theory. Targets are localized with the sparse signal reconstruction. In order to investigate MTLSI performance, BP and OMP are applied to recover targets localization. Simulation results show that MTLSI can provide satisfied targets localization in wireless sensor networks application with less data bits transmission compared to multiple targets localization using compressive sensing based on received signal strengths (MTLCS-RSS), which has the same computation complexity as MTLIS.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3