Current Status and Future Prospects of the SNO+ Experiment

Author:

Andringa S.1,Arushanova E.2,Asahi S.3,Askins M.4,Auty D. J.5,Back A. R.26,Barnard Z.7,Barros N.18,Beier E. W.8,Bialek A.5,Biller S. D.9,Blucher E.10,Bonventre R.8,Braid D.7,Caden E.7,Callaghan E.8,Caravaca J.1112,Carvalho J.13,Cavalli L.9,Chauhan D.137,Chen M.3,Chkvorets O.7,Clark K.369,Cleveland B.714,Coulter I. T.89,Cressy D.7,Dai X.3,Darrach C.7,Davis-Purcell B.15,Deen R.89,Depatie M. M.7,Descamps F.1112,Di Lodovico F.2,Duhaime N.7,Duncan F.714,Dunger J.9,Falk E.6,Fatemighomi N.3,Ford R.714,Gorel P.5,Grant C.4,Grullon S.8,Guillian E.3,Hallin A. L.5,Hallman D.7,Hans S.16,Hartnell J.6,Harvey P.3,Hedayatipour M.5,Heintzelman W. J.8,Helmer R. L.15,Hreljac B.7,Hu J.5,Iida T.3,Jackson C. M.1112,Jelley N. A.9,Jillings C.714,Jones C.9,Jones P. G.29,Kamdin K.1112,Kaptanoglu T.8,Kaspar J.17,Keener P.8,Khaghani P.7,Kippenbrock L.17,Klein J. R.8,Knapik R.818,Kofron J. N.17,Kormos L. L.19,Korte S.7,Kraus C.7,Krauss C. B.5,Labe K.10,Lam I.3,Lan C.3,Land B. J.1112,Langrock S.2,LaTorre A.10,Lawson I.714,Lefeuvre G. M.6,Leming E. J.6,Lidgard J.9,Liu X.3,Liu Y.3,Lozza V.20,Maguire S.16,Maio A.121,Majumdar K.9,Manecki S.3,Maneira J.121,Marzec E.8,Mastbaum A.8,McCauley N.22,McDonald A. B.3,McMillan J. E.23,Mekarski P.5,Miller C.3,Mohan Y.8,Mony E.3,Mottram M. J.26,Novikov V.3,O’Keeffe H. M.319,O’Sullivan E.3,Orebi Gann G. D.81112,Parnell M. J.19,Peeters S. J. M.6,Pershing T.4,Petriw Z.5,Prior G.1,Prouty J. C.1112,Quirk S.3,Reichold A.9,Robertson A.22,Rose J.22,Rosero R.16,Rost P. M.7,Rumleskie J.7,Schumaker M. A.7,Schwendener M. H.7,Scislowski D.17,Secrest J.24,Seddighin M.3,Segui L.9,Seibert S.8,Shantz T.7,Shokair T. M.8,Sibley L.5,Sinclair J. R.6,Singh K.5,Skensved P.3,Sörensen A.20,Sonley T.3,Stainforth R.22,Strait M.10,Stringer M. I.6,Svoboda R.4,Tatar J.17,Tian L.3,Tolich N.17,Tseng J.9,Tseung H. W. C.17,Van Berg R.8,Vázquez-Jáuregui E.1425,Virtue C.7,von Krosigk B.20,Walker J. M. G.22,Walker M.3,Wasalski O.15,Waterfield J.6,White R. F.6,Wilson J. R.2,Winchester T. J.17,Wright A.3,Yeh M.16,Zhao T.3,Zuber K.20

Affiliation:

1. Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Avenida Elias Garcia 14, 1°, 1000-149 Lisboa, Portugal

2. School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK

3. Department of Physics, Engineering Physics & Astronomy, Queen’s University, Kingston, ON, Canada K7L 3N6

4. University of California, 1 Shields Avenue, Davis, CA 95616, USA

5. Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, AB, Canada T6G 2E1

6. Physics & Astronomy, University of Sussex, Pevensey II, Falmer, Brighton BN1 9QH, UK

7. Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, Canada P3E 2C6

8. Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6396, USA

9. University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK

10. The Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA

11. Department of Physics, University of California, Berkeley, CA 94720, USA

12. Lawrence Berkeley National Laboratory, Nuclear Science Division, 1 Cyclotron Road, Berkeley, CA 94720-8153, USA

13. Laboratório de Instrumentação e Física Experimental de Partículas and Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal

14. SNOLAB, Creighton Mine No. 9, 1039 Regional Road 24, Sudbury, ON, Canada P3Y 1N2

15. TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3

16. Brookhaven National Laboratory, Chemistry Department, Building 555, P.O. Box 5000, Upton, NY 11973-500, USA

17. Center for Experimental Nuclear Physics and Astrophysics and Department of Physics, University of Washington, Seattle, WA 98195, USA

18. Norwich University, 158 Harmon Drive, Northfield, VT 05663, USA

19. Physics Department, Lancaster University, Lancaster LA1 4YB, UK

20. Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany

21. Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa, Portugal

22. Department of Physics, University of Liverpool, Liverpool L69 3BX, UK

23. Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK

24. Department of Chemistry & Physics, Armstrong Atlantic State University, 11935 Abercorn Street, Savannah, GA 31419, USA

25. Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 20-364, 01000 México, DF, Mexico

Abstract

SNO+ is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0νββ) of130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55–133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The0νββPhase I is foreseen for 2017.

Funder

Science and Technology Facilities Council

Publisher

Hindawi Limited

Subject

Nuclear and High Energy Physics

Cited by 198 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dark matter decay to neutrinos;Physical Review D;2023-12-13

2. Reconstruction of point events in liquid-scintillator detectors subjected to total internal reflection;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-12

3. Characterization of the scintillation response of water-based liquid scintillator to alpha particles, and implications for particle identification;The European Physical Journal C;2023-11-30

4. Thermally-driven scintillator flow in the SNO+ neutrino detector;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-10

5. New magic neutrino mass textures with three free parameters;Nuclear Physics B;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3