Assessment of Pilots’ Cognitive Competency Using Situation Awareness Recognition Model Based on Visual Characteristics

Author:

Jiang Shaoqi12ORCID,Su Ruifang3ORCID,Ren Zhenzhen4,Chen Weijiong24,Kang Yutao2

Affiliation:

1. College of Information Engineering, Jinhua Polytechnic, Jinhua, Zhejiang, China

2. College of Environment and Engineering, Shanghai Maritime University, Shanghai, China

3. Department Information Center, Jinhua Maternal and Child Health Care Hospital, Jinhua, Zhejiang, China

4. College of Merchant Marine, Shanghai Maritime University, Shanghai, China

Abstract

Visual characteristics have the potential to assess the navigational proficiency of ship pilots. A precise assessment of ship piloting competence is imperative to mitigate human errors in piloting. An exhaustive examination of cognitive capabilities plays a pivotal role in developing an enhanced and refined system for classifying, selecting, and training ship piloting proficiency. Insufficiency in situation awareness (SA), denoting the cognitive underpinning of hazardous behaviors among pilots, may lead to subpar performance in ship pilotage when faced with adverse conditions. To address this issue, we propose an SA recognition model based on the random forest-support vector machine (RF-SVM) algorithm, which utilizes wearable eye-tracking technology to detect pilots’ at-risk cognitive state, specifically low-SA levels. We rectify the relative error (RE) and root mean square error (RMSE) and employ principal component analysis (PCA) to enhance the RF algorithm, optimizing the combination of salient features in greater depth. Through the utilization of these feature combinations, we construct a SVM algorithm using the most suitable variables for SA recognition. Our proposed RF-SVM algorithm is compared to RF or SVM alone, and it achieves the highest accuracy in recognizing at-risk cognitive states under poor visibility conditions (an improvement of 86.79% to 93.43% in accuracy). Taken collectively, the present findings offer vital technical support for developing a technique-based intelligent system for adaptively evaluating the cognitive accomplishment of pilots. Furthermore, they establish the groundwork and framework for the surveillance of cognitive processes and capabilities in marine pilotage operations within China.

Funder

Jinhua Municipal Project for Public Welfare Technology Application Research

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3