A Deep Multiscale Fusion Method via Low-Rank Sparse Decomposition for Object Saliency Detection Based on Urban Data in Optical Remote Sensing Images

Author:

Zhang Cheng1ORCID,He Dan2

Affiliation:

1. City Institute, Dalian University of Technology, China

2. Dalian University of Finance and Economics, China

Abstract

The urban data provides a wealth of information that can support the life and work for people. In this work, we research the object saliency detection in optical remote sensing images, which is conducive to the interpretation of urban scenes. Saliency detection selects the regions with important information in the remote sensing images, which severely imitates the human visual system. It plays a powerful role in other image processing. It has successfully made great achievements in change detection, object tracking, temperature reversal, and other tasks. The traditional method has some disadvantages such as poor robustness and high computational complexity. Therefore, this paper proposes a deep multiscale fusion method via low-rank sparse decomposition for object saliency detection in optical remote sensing images. First, we execute multiscale segmentation for remote sensing images. Then, we calculate the saliency value, and the proposal region is generated. The superpixel blocks of the remaining proposal regions of the segmentation map are input into the convolutional neural network. By extracting the depth feature, the saliency value is calculated and the proposal regions are updated. The feature transformation matrix is obtained based on the gradient descent method, and the high-level semantic prior knowledge is obtained by using the convolutional neural network. The process is iterated continuously to obtain the saliency map at each scale. The low-rank sparse decomposition of the transformed matrix is carried out by robust principal component analysis. Finally, the weight cellular automata method is utilized to fuse the multiscale saliency graphs and the saliency map calculated according to the sparse noise obtained by decomposition. Meanwhile, the object priors knowledge can filter most of the background information, reduce unnecessary depth feature extraction, and meaningfully improve the saliency detection rate. The experiment results show that the proposed method can effectively improve the detection effect compared to other deep learning methods.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3