Hybrid Dynamic Route Planning Model for Pedestrian Microscopic Simulation at Subway Station

Author:

Gao Yongxin1ORCID,Chen Feng12ORCID,Wang Zijia1ORCID

Affiliation:

1. School of Civil and Architectural Engineering, Beijing Jiaotong University, Beijing, China

2. School of Highway, Chang’an University, Xi’an, China

Abstract

To make agents’ route decision-making behaviours as real as possible, this paper proposes a layered navigation algorithm, emphasizing the coordinating of the global route planning at strategic level and the local route planning at tactical level. Specifically, by an improved visibility graph method, the global route is firstly generated based on static environment map. Then, a new local route planning (LRP) based on dynamic local environment is activated for multipath selection to allow pedestrian to respond changes at a real-time sense. In particular, the LRP model is developed on the basis of a passenger’s psychological motivation. The pedestrians’ individual preferences and the uncertainties existing in the process of evaluation and choice are fully considered. The suitable local path can be generated according to an estimated passing time. The LRP model is applied to the choice of ticket gates at a subway station, and the behaviours of gate choosing and rechoosing are investigated. By utilizing C++, the layered navigation algorithm is implemented. The simulation results exhibit agents’ tendency to avoid congestion, which is often observed in real crowds.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-Layers Model of Pedestrian in 2D Complex Space;Journal of Physics: Conference Series;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3