Stability of a Nonlinear Stochastic Epidemic Model with Transfer from Infectious to Susceptible

Author:

Wang Yanmei12ORCID,Liu Guirong1ORCID

Affiliation:

1. School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China

2. School of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, China

Abstract

We investigate a stochastic SIRS model with transfer from infectious to susceptible and nonlinear incidence rate. First, using stochastic stability theory, we discuss stochastic asymptotic stability of disease-free equilibrium of this model. Moreover, if the transfer rate from infectious to susceptible is sufficiently large, disease goes extinct. Then, we obtain almost surely exponential stability of disease-free equilibrium, which implies that noises can lead to extinction of disease. By the Lyapunov method, we give conditions to ensure that the solution of this model fluctuates around endemic equilibrium of the corresponding deterministic model in average time. Furthermore, numerical simulations show that the fluctuation increases with increase in noise intensity. Finally, these theoretical results are verified by numerical simulations. Hence, noises play a vital role in epidemic transmission. Our results improve and extend previous related results.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3