Modeling and Optimization of the BSCF-Based Single-Chamber Solid Oxide Fuel Cell by Artificial Neural Network and Genetic Algorithm

Author:

Le Minh-Vien1,Nguyen Tuan-Anh1ORCID,Nguyen T.-Anh-Nga2ORCID

Affiliation:

1. Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, Ho Chi Minh City, Vietnam

2. Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho Str., Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam

Abstract

Fuel cells could be a highly effective and eco-friendly technology to transform chemical energy stored in fuel to useful electricity and thus are presently appraised as a standout among the most encouraging advancements for future energy demand. Solid oxide fuel cells (SOFCs) have several advantages over other types of fuel cells, such as the flexibility of fuel used, high energy conversion, and relatively inexpensive catalysts due to high-temperature operation. The single chambers, wherein the anode and cathode are exposed to the same mixture of fuel, are promising for the portable power application due to the simplified, compact, sealing-free cell structure. The empirical regression models, such as artificial neural networks (ANNs), can be used as a black-box tool to simulate systems without solving the complicated physical equations merely by utilizing available experimental data. In this study, the performance of the newly proposed BSCF/GDC-based cathode SOFC was modeled using ANNs. The cell voltage was estimated with cathode preparation temperature, cell operating temperature, and cell current as input parameters by the one-layer feed-forward neural network. In order to acquire the appropriate model, several network structures were tested, and the network was trained by backpropagation algorithms. The data used during the training, validation, and test are the actual experimental results from our previous study. The optimum conditions to achieve maximum power of the cell were then determined by the genetic algorithm and the developed ANN.

Funder

National Foundation for Science and Technology Development

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3