A Two-Stage Method for Improving the Prediction Accuracy of Complex Traits by Incorporating Genotype by Environment Interactions inBrassica napus

Author:

Xiong Sican12ORCID,Wang Meng3,Zou Jun3,Meng Jinling3,Liu Yanyan2

Affiliation:

1. School of Science, East China University of Technology, Nanchang, Jiangxi 330013, China

2. School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, China

3. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China

Abstract

Improving the prediction accuracy of a complex trait of interest is key to performing genomic selection (GS) for crop breeding. For the complex trait measured in multiple environments, this paper proposes a two-stage method to solve a linear model that jointly models the genetic effects and the genotype × environment interaction (G × E) effects. In the first stage, the least absolute shrinkage and selection operator (LASSO) penalized method was utilized to identify quantitative trait loci (QTL). Then, the ordinary least squares (OLS) approach was used in the second stage to reestimate the QTL effects. As a case study, this approach was used to improve the prediction accuracies of flowering time (FT), oil content (OC), and seed yield per plant (SY) inBrassica napus(B. napus). The results showed that theG × Eeffects reduced the mean squared error (MSE) significantly. Numerous QTL were environment-specific and presented minor effects. On average, the two-stage method, named OLS post-LASSO, offers the highest prediction accuracies (correlations are 0.8789, 0.9045, and 0.5507 for FT, OC, and SY, respectively). It was followed by the marker × environment interaction (M × E) genomic best linear unbiased prediction (GBLUP) model (correlations are 0.8347, 0.8205, and 0.4005 for FT, OC, and SY, respectively), the LASSO method (correlations are 0.7583, 0.7755, and 0.2718 for FT, OC, and SY, respectively), and the stratified GBLUP model (correlations are 0.6789, 0.6361, and 0.2860 for FT, OC, and SY, respectively). The two-stage method showed an obvious improvement in the prediction accuracy, and this study will provide methods and reference to improve GS of breeding.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modelling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3