Affiliation:
1. State Grid Qinghai Maintenance Company, Xining 810021, China
Abstract
Substation equipment is not only the main part of the power grid but also the essential part to ensure the development of the national economy and People's Daily life of one of the important infrastructure. How to ensure its normal operation and find the sudden failure has become a hot issue to be solved urgently. For thermal fault diagnosis needs to classify and identify different power equipment first, this paper designed an SVM infrared image classifier, which can effectively identify three types of common power equipment. The classifier extracts HOG features from the infrared images of power equipment processed by the above segmentation and combines them with SVM multiclassification to achieve the purpose of improving the recognition accuracy. The experiment uses the classifier to identify three kinds of equipment, and the results show that the comprehensive recognition accuracy of the classifier is more than 95.3%, which is better than the traditional classification method and meets the demand for classification accuracy. In this paper, the traditional method of relative temperature difference is improved by using the temperature data of the infrared image, which can automatically judge the thermal failure level of electric power equipment. Experiments show that the diagnosis system designed in this paper can classify faults and give treatment suggestions while judging whether there are thermal faults for three types of power equipment, which verifies the feasibility and effectiveness of the substation infrared diagnosis technology designed in this paper.
Subject
Computer Science Applications,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献