Diagnosis and Classification Decision Analysis of Overheating Defects of Substation Equipment Based on Infrared Detection Technology

Author:

Shi Zhigang1,Zhao Yunlong1ORCID,Liu Zhanshuang1,Zhang Yanan1,Ma Le1

Affiliation:

1. State Grid Qinghai Maintenance Company, Xining 810021, China

Abstract

Substation equipment is not only the main part of the power grid but also the essential part to ensure the development of the national economy and People's Daily life of one of the important infrastructure. How to ensure its normal operation and find the sudden failure has become a hot issue to be solved urgently. For thermal fault diagnosis needs to classify and identify different power equipment first, this paper designed an SVM infrared image classifier, which can effectively identify three types of common power equipment. The classifier extracts HOG features from the infrared images of power equipment processed by the above segmentation and combines them with SVM multiclassification to achieve the purpose of improving the recognition accuracy. The experiment uses the classifier to identify three kinds of equipment, and the results show that the comprehensive recognition accuracy of the classifier is more than 95.3%, which is better than the traditional classification method and meets the demand for classification accuracy. In this paper, the traditional method of relative temperature difference is improved by using the temperature data of the infrared image, which can automatically judge the thermal failure level of electric power equipment. Experiments show that the diagnosis system designed in this paper can classify faults and give treatment suggestions while judging whether there are thermal faults for three types of power equipment, which verifies the feasibility and effectiveness of the substation infrared diagnosis technology designed in this paper.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3