Optimization of Liquid Fuel Production from Microwave Pyrolysis of Used Tyres

Author:

Bett Ronald k.12ORCID,Kumar Anil3ORCID,Siagi Zachary O.1ORCID

Affiliation:

1. Department of Mechanical, Production and Energy Engineering, School of Engineering, Moi University, Uasin Gishu County, P. O Box 3900-30100 Eldoret, Kenya

2. Africa Centre of Excellence II in Phytochemicals, Textiles and Renewable Energy (ACE II PTRE), Moi University, Uasin Gishu County, P. O Box 3900-30100 Eldoret, Kenya

3. Department of Chemical & Process Engineering, School of Engineering, Moi University, Uasin Gishu County, P. O Box 3900-30100 Eldoret, Kenya

Abstract

Used tyres pose a threat to the environment, especially in developing countries, since the current disposal methods lead to environmental pollution. Pyrolysis liquid from used tyres can be used as a source of fuel to replace petroleum diesel. Microwave pyrolysis is an alternative valorization process that is supposed to save energy and, therefore, is environment friendly. In the current study, microwave pyrolysis was used to produce liquid fuel. Processing variable levels for microwave were power levels of 20, 30, 40, 50, 60, 80, and 100%; the reaction times were 8, 13, 18, 23, and 28 minutes; and the particle sizes were 25, 50, 100, and 200 mm2. Design-Expert 13 was used for data analysis and optimization, and GC-MS was used for chemical composition analysis, while physiochemical properties were tested using standard methods. Response surface methodology (RSM) was used to study the effects of operating variables and identify the points of optimal yields. For microwave pyrolysis, the highest liquid yield of 39.1 wt. % was at 50% power, 18 min reaction time, and particle size of 25 mm2. The yield decreased as the particle size increased. RSM gave conditions for optima in agreement with the experimental results. The calorific value for liquid fuel was 48.99 MJ/kg. GC-MS analysis showed that the oil comprised complex mixtures of organic compounds with limonene, toluene, and xylene as major components. The liquid fuel properties meet the required international standards and can be used as an alternative to diesel fuel.

Funder

Moi University

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3