A Swarm Random Walk Based Method for the Standard Cell Placement Problem

Author:

Altwaijry Najwa1ORCID,Menai Mohamed El Bachir1ORCID

Affiliation:

1. Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11453, Saudi Arabia

Abstract

The standard cell placement (SCP) problem is a well-studied placement problem, as it is an important step in the VLSI design process. In SCP, cells are placed on chip to optimize some objectives, such as wirelength or area. The SCP problem is solved using mainly four basic methods: simulated annealing, quadratic placement, min-cut placement, and force-directed placement. These methods are adequate for small chip sizes. Nowadays, chip sizes are very large, and hence, hybrid methods are employed to solve the SCP problem instead of the original methods by themselves. This paper presents a new hybrid method for the SCP problem using a swarm intelligence-based (SI) method, called SwarmRW (swarm random walk), on top of a min-cut based partitioner. The resulting placer, called sPL (swarm placer), was tested on the PEKU benchmark suite and compared with several related placers. The obtained results demonstrate the effectiveness of the proposed approach and show that sPL can achieve competitive performance.

Funder

Research Center of the Center for Female Scientific and Medical Colleges

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Adaptive Multimeme Memetic Algorithm for the VLSI Standard Cell Placement Problem;Advances in Intelligent Information Hiding and Multimedia Signal Processing;2021

2. Metaheuristic-based adaptive curriculum sequencing approaches: a systematic review and mapping of the literature;Artificial Intelligence Review;2020-06-27

3. Swarm intelligence to solve the curriculum sequencing problem;Computer Applications in Engineering Education;2018-08-08

4. An Adaptive Hybrid Genetic Algorithm for VLSI Standard Cell Placement Problem;2016 3rd International Conference on Information Science and Control Engineering (ICISCE);2016-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3