A Pan-Cancer Analysis of the Oncogenic Roles of RAD51 in Human Tumors

Author:

Lu Han1ORCID,Li Zhenzhen2,Liu Liangeng1,Tao Yunjuan1,Zhou Yue1,Mao Xiaohong1,Zhu Aoxun1,Wu Honglin3ORCID,Zheng Xingzhong1ORCID

Affiliation:

1. Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China

2. Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China

3. State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China

Abstract

Objective. RAD51 homolog 1 (RAD51) plays significant roles in DNA damage repair and apoptosis. These pathways are tightly associated with tumor initiation and progression. To unravel the roles of RAD51 in oncogenesis and progression of different cancers, herein, a comprehensive analysis of the RAD51 was carried out using multiomics datasets of 33 cancers. Methods. Raw data were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. We analyzed the correlation between RAD51 expression and drug response using datasets from CellMiner. Next, clinical characteristics and prognostic values of RAD51 were conducted based on TCGA data. The correlation between RAD51 expression and tumor immune infiltration was explored. This was followed by gene set enrichment analysis by Rsoftware. In addition, pan-cancer analysis was conducted to investigate genetic and epigenetic alterations, respectively. Results. RAD51 was upregulated in most tumors, and this was associated with poor overall survival (OS), progression-free survival (PFS), and disease-specific survival (DSS). The expression level of RAD51 is significantly associated with the IC50 of multiple antitumor drugs and the proportion of stromal and immune components in tumor microenvironment (TME). Moreover, RAD51 expression showed a positive relationship with multiple key immune checkpoint and immunosuppressive genes, including death-ligand 1 (PD-L1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), CD28, and several TNF-related immune genes. Gene set enrichment analysis uncovered that RAD51 correlated with cell cycle, cell division, and immune system pathways in diverse cancers. Our results revealed a strong link between RAD51 expression and microsatellite instability (MSI) or tumor mutation burden (TMB). Conclusions. Our pan-cancer analysis provides a comprehensive overview of the roles of RAD51 in multiple human cancers and infers that RAD51 has the potential as a biomarker for progression and immune infiltration of different tumor types.

Publisher

Hindawi Limited

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3