Implementation of the Barton–Bandis Nonlinear Strength Criterion into Mohr–Coulomb Sliding Failure Model

Author:

Dai Zhenwei123ORCID,Wang Luqi23ORCID,Zhang Kaiqiang2ORCID,Wang Lin2ORCID,Gao Xuecheng24ORCID

Affiliation:

1. Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China

2. School of Civil Engineering, Chongqing University, Chongqing 400045, China

3. Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment, Sanhe, Hebei 065201, China

4. Industrial Technology Research Institute, Chongqing University, Chongqing 400045, China

Abstract

The stability of rocky slope is determined mainly by discontinuities. The discrete element calculation method can be used to analyze the geometric features of rock structures and to deal with the nonlinear deformation and destruction of the rock mass that may be affected by the discontinuities. In this paper, the Barton–Bandis (B-B) nonlinear strength criterion was introduced to improve the Mohr–Coulomb (M-C) slip model of joint slope. The modified model could reflect the real-time shear strength in a changing stress state. Using the numerical calculation of the shear test of the structural plane, we found that the corrected slip curve fits well with the process before the failure of the shear test. Furthermore, the modified model can track the disintegration between blocks while sliding failure of joint slope. With an increase in the number of structural planes and the complexity of the relative location of blocks, the interaction force between blocks and the sliding failure mode of the joint slope would be more complex. Changing the nonlinear parameters with the stress state of the structure plane could effectively solve this problem.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3