Basic Research on Ancient Bai Character Recognition Based on Mobile APP

Author:

Zhang Zeqing12ORCID,Lee Cuihua1,Gao Zuodong1ORCID,Li Xiaofan1ORCID

Affiliation:

1. Xiamen University, Amoy, China

2. West Yunnan University of Applied Sciences, Dali, China

Abstract

Bai nationality has a long history and has its own language. Limited by the fact that there are fewer and fewer people who know the Bai language, the literature and culture of the Bai nationality begin to lose rapidly. In order to make the people who do not understand Bai characters can also read the ancient books of Bai nationality, this paper is based on the research of high-precision single character recognition model of Bai characters. First, with the help of Bai culture lovers and related scholars, we have constructed a data set of Bai characters, but limited by the need of expert knowledge, so the data set is limited in size. As a result, deep learning models with the nature of data hunger cannot get an ideal accuracy. In order to solve this issue, we propose to use the Chinese data set which also belongs to Sino-Tibetan language family to improve the recognition accuracy of Bai characters through transfer learning. In addition, we propose four transfer learning approaches: Direct Knowledge Transfer (DKT), Indirect Knowledge Transfer (IKT), Self-coding Knowledge Transfer (SCKT), and Self-supervised Knowledge Transfer (SSKT). Experiments show that our approaches greatly improve the recognition accuracy of Bai characters.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference30 articles.

1. Deep residual learning for image recognition;K. He

2. Pointnet: deep learning on point sets for 3d classification and segmentation;C. R. Qi

3. Faster r-cnn: towards real-time object detection with region proposal networks;S. Ren

4. Integrating Sensor Ontologies with Global and Local Alignment Extractions

5. Matching large-scale biomedical ontologies with central concept based partitioning algorithm and Adaptive Compact Evolutionary Algorithm

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3