Affiliation:
1. State Grid Shanghai Municipal Electric Power Company, Shanghai 200030, China
2. Shanghai Jiao Tong University, Shanghai 200030, China
Abstract
The traditional topic-based auditing model lacks the ability of multi-object and multi-abnormal correlation auditing, which makes it impossible to solve the multi-scenario and multi-factor correlation-based auditing problem. This paper designs an intelligent power marketing audit model based on a knowledge graph. First, an entity identification and relationship extraction method for power marketing business based on NLP (natural language processing) and sequence annotation technology is proposed, and the description content is imported into the knowledge graph database; then, semantic disambiguation and knowledge are carried out by using bidirectional encoder representation from transformers (BERT). Link to build a knowledge map of business audit rules: Finally, an experimental analysis is carried out by taking the copying and receiving business with a large business volume in the marketing audit work as an example, and it is verified that the proposed model can effectively improve the information analysis ability and the audit accuracy of the audit work.
Subject
Computer Science Applications,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献