Affiliation:
1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Kunming Surveying and Mapping Institute, Kunming 650051, China
Abstract
Due to the unmanned aerial vehicle remote sensing images (UAVRSI) within rich texture details of ground objects and obvious phenomenon, the same objects with different spectra, it is difficult to effectively acquire the edge information using traditional edge detection operator. To solve this problem, an edge detection method of UAVRSI by combining Zernike moments with clustering algorithms is proposed in this study. To begin with, two typical clustering algorithms, namely, fuzzy c-means (FCM) and K-means algorithms, are used to cluster the original remote sensing images so as to form homogeneous regions in ground objects. Then, Zernike moments are applied to carry out edge detection on the remote sensing images clustered. Finally, visual comparison and sensitivity methods are adopted to evaluate the accuracy of the edge information detected. Afterwards, two groups of experimental data are selected to verify the proposed method. Results show that the proposed method effectively improves the accuracy of edge information extracted from remote sensing images.
Funder
Kunming University of Science and Technology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献