Affiliation:
1. Laboratoire Paul Painlevé, University of Lille 1, 59655 Villeneuve d’Ascq Cedex, France
Abstract
We study a singularly perturbed PDE with quadratic nonlinearity depending on a complex perturbation parameter ϵ. The problem involves an irregular singularity in time, as in a recent work of the author and A. Lastra, but possesses also, as a new feature, a turning point at the origin in C. We construct a family of sectorial meromorphic solutions obtained as a small perturbation in ϵ of a slow curve of the equation in some time scale. We show that the nonsingular parts of these solutions share common formal power series (that generally diverge) in ϵ as Gevrey asymptotic expansion of some order depending on data arising both from the turning point and from the irregular singular point of the main problem.
Subject
Applied Mathematics,Analysis