Global Autorecognition and Activation of Complement by Mannan-Binding Lectin in a Mouse Model of Type 1 Diabetes

Author:

Axelgaard Esben1ORCID,Østergaard Jakob Appel23ORCID,Haxha Saranda2,Thiel Steffen1,Hansen Troels Krarup2ORCID

Affiliation:

1. Department of Biomedicine, Wilhelm Meyer’s Allé 4, Faculty of Health Sciences, Aarhus University, Aarhus C, Denmark

2. Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark

3. The Danish Diabetes Academy, Odense, Denmark

Abstract

Increasing evidence links mannan-binding lectin (MBL) to late vascular complications of diabetes. MBL is a complement-activating pattern recognition molecule of the innate immune system that can mediate an inflammation response through activation of the lectin pathway. In two recent animal studies, we have shown that autoreactivity of MBL is increased in the kidney in diabetic nephropathy. We hypothesize that long-term exposure to uncontrolled high blood glucose in diabetes may mediate formation of neoepitopes in several tissues and that MBL is able to recognize these structures and thus activate the lectin pathway. To test this hypothesis, we induced diabetes by injection of low-dose streptozotocin in MBL double-knockout (MBL/DKO) mice. Development of diabetes was followed by measurements of blood glucose and urine albumin-to-creatinine ratio. Fluorophore-labelled recombinant MBL was injected intravenously in diabetic and nondiabetic mice followed by ex vivo imaging of several organs. We observed that MBL accumulated in the heart, liver, brain, lung, pancreas, and intestines of diabetic mice. We furthermore detected increased systemic complement activation after administration of MBL, thus indicating MBL-mediated systemic complement activation in these animals. These new findings indicate a global role of MBL during late diabetes-mediated vascular complications in various tissues.

Funder

Danish Diabetes Association

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3