Identification of a New Serine Alkaline Peptidase from the Moderately Halophilic Virgibacillus natechei sp. nov., Strain FarDT and its Application as Bioadditive for Peptide Synthesis and Laundry Detergent Formulations

Author:

Mechri Sondes1,Bouacem Khelifa12,Amziane Meriam2,Dab Ahlem1,Nateche Farida2ORCID,Jaouadi Bassem13ORCID

Affiliation:

1. Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia

2. Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria

3. Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia

Abstract

A new peptidase designated as SAPV produced from a moderately halophilic Virgibacillus natechei sp. nov., strain FarDT was investigated by purification to homogeneity followed by biochemical and molecular characterization purposes. Through optimization, it was determined that the optimum peptidase activity was 16,000 U/mL. It was achieved after 36 h incubation at 35°C in the optimized enzyme liquid medium (ELM) at pH 7.4 that contains only white shrimp shell by-product (60 g/L) as sole energy and carbon sources. The SAPV enzyme is a monomer protein with a molecular mass of 31 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance liquid chromatography (HPLC) gel filtration chromatography. The sequence of its NH2-terminal amino-acid residues showed homology with those of Bacillus peptidases S8/S53 superfamily. The SAPV showed optimal activity at pH 9 and 60°C. Irreversible inhibition of enzyme activity by diiodopropyl fluorophosphates (DFP) and phenylmethanesulfonyl fluoride (PMSF) confirmed its belonging to the serine peptidases. Considering its interesting biochemical characterization, the sapV gene was cloned, sequenced, and heterologously overexpressed in the extracellular fraction of E. coli BL21(DE3)pLysS. The biochemical properties of the recombinant peptidase (rSAPV) were similar to those of the native one. The highest sequence identity value (97.66%) of SAPV was obtained with peptidase S8 from Virgibacillus massiliensis DSM 28587, with 9 amino-acid residues of difference. Interestingly, rSAPV showed an outstanding and high resistance to several organic solvents than SPVP from Aeribacillus pallidus VP3 and Thermolysin type X. Furthermore, rSAPV exhibited an excellent detergent stability and compatibility than Alcalase 2.4 L FG and Bioprotease N100L. Considering all these remarkable properties, rSAPV has attracted the interest of industrialists.

Funder

Ministry of Higher Education and Scientific Research

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3