Molecular Mechanisms Underpinning Microparticle-Mediated Cellular Injury in Cardiovascular Complications Associated with Diabetes

Author:

Benameur Tarek1,Osman Aisha2,Parray Aijaz3,Ait Hssain Ali4,Munusamy Shankar5ORCID,Agouni Abdelali2ORCID

Affiliation:

1. College of Medicine, King Faisal University, P.O. Box 400, Al-Ahsa, Saudi Arabia

2. Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, P.O. Box 2713, Doha, Qatar

3. The Stroke Program, The Neuroscience Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar

4. Medical Intensive Care Unit, ECMO Team, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar

5. Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA 50311, USA

Abstract

Microparticles (MPs) are small vesicles shed from the cytoplasmic membrane of healthy, activated, or apoptotic cells. MPs are very heterogeneous in size (100–1,000 nm), and they harbor proteins and surface antigens specific to cells they originate from. Virtually, all cells can shed MPs, and therefore, they can be found in all body fluids, but also entrapped in tissues. Of interest and because of their easy detection using a variety of techniques, circulating MPs were recognized as biomarkers for cell activation. MPs were also found to mediate critical actions in intercellular communication and transmitting biological messages by acting as paracrine vehicles. High plasma numbers of MPs were reported in many cardiovascular and metabolic disturbances that are closely associated with insulin resistance and low-grade inflammation and have been linked to adverse actions on cardiovascular function. This review highlights the involvement of MPs in cardiovascular complications associated with diabetes and discusses the molecular mechanisms that underpin the pathophysiological role of MPs in the onset and progression of cellular injury in diabetes.

Funder

Qatar University

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3