Feature Extraction of Foul Action of Football Players Based on Machine Vision

Author:

Guan Hao1,Niu Hualiang2ORCID

Affiliation:

1. Shanxi Polytechnic College, Taiyuan 030001, Shanxi, China

2. Department of Physical Education, Luliang College, Lvliang 033000, Shanxi, China

Abstract

With the improvement of technology and tactics, the rhythm of football match is getting faster and faster, which leads to more intense competition behavior in a football match; the physical contact of both players is also increasing, and the frequency of fouls by football players is getting higher and higher. This leads to fouls by players. Because of the error of visual analysis, in the crowd of high-level football players, the traditional football players’ foul behavior feature extraction method has the problem of low precision of foul action feature extraction. This paper mainly studies the feature extraction of soccer players’ foul action based on machine vision. To solve these problems, this paper uses a machine vision-based football player foul action feature extraction method, using a machine vision system to obtain football player action image, based on threshold recognition algorithm to identify the football player’s foul action. Based on the recognition of the foul action image, the potential function sequence of the foul action sequence is established by the Harris 3D operator, and the characteristic data of football player foul action are filtered by the AdaBoost algorithm. The simulation results show that this method has high accuracy in identifying fouls in the range of high-level football players and effectively reduces the recognition error. The method proposed in this paper can effectively analyze the characteristics of foul action and help football clubs to develop more perfect tactics.

Funder

teaching reform and innovation project of colleges and universities in Shanxi Province

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3